N-acetyl-L-cysteine enhances the osteogenic differentiation and inhibits the adipogenic differentiation through up regulation of Wnt 5a and down regulation of PPARG in bone marrow stromal cells.

نویسندگان

  • HuiJiao Ji
  • YuKan Liu
  • XiaoLi Zhao
  • Ming Zhang
چکیده

Nowadays, the treatment of osteoporosis is still a great challenge in the medical field. The combination of enhancement of osteogenesis and the inhibition of adipogenesis of bone marrow stromal cells (BMSCs) is considered an efficient therapeutic strategy for the treatment of osteoporosis. In the present study, we investigated the effects of N-acetyl-L-cysteine (NAC) on the proliferation, osteogenesis and adipogenesis of BMSCs. NAC treatment enhanced the alkaline phosphatase activity, mineral deposition and mRNA expression levels of osteogenesis markers collagen I, osteopontin, and signal pathway related protein Wingless-type family member 5a in addition to Wingless-type family member 3a during osteogenic induction, and inhibited the accumulation of lipid droplets and the expression levels of lipoprotein lipase, fatty acid binding protein 4 and peroxisome proliferator-activated receptor gamma mRNA during adipogenic induction. Meanwhile, NAC had the same effects as enhancing mineral deposition in regular culture condition. In addition, cell proliferation was also promoted by NAC treatment in regular culture condition. These results suggested that NAC may enhance osteogenic differentiation and inhibit adipogenic differentiation of BMSCs, which is at least partially mediated by up regulating Wnt 5a and down regulating PPARG. Taking into account the extensive protective effects of NAC and that the maintenance of BMSCs number is an important factor in osteoporosis prevention and treatment, these observations suggested that NAC is a promising potential drug for the prevention and treatment of osteoporosis and its associated diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow

Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...

متن کامل

Equine Bone Marrow Derived Mesenchymal Stem Cells: Isolation and Multilineage Differentiation

Objective- To evaluate growth characteristics and differentiation capacity of equine mesenchymal stem cell (eMSCs) derived from bone marrow (BM). Study design- In vitro experimental study. Animals- Four young adult horses (2-5 years old) Procedure- Cell morphology and growth characteristics of eMSCs harvested from BM were evaluated in standard culture conditions. eMSCs in passage 3 were subj...

متن کامل

Cysteine Dioxygenase Type 1 Inhibits Osteogenesis by Regulating Wnt Signaling in Primary Mouse Bone Marrow Stromal Cells

Mesenchymal stem cells (MSCs) are multipotent cells, which can give rise to variety of cell types, including adipocytes and osteoblasts. Previously, we have shown that cysteine dioxygenase type 1 (Cdo1) promoted adipogenesis of primary mouse bone marrow stromal cells (BMSCs) and 3T3-L1 pre-adipocytes via interaction with Pparγ. However, the role of Cdo1 in osteogenesis remains unclear. Here, we...

متن کامل

Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells

Objective(s): Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay ...

متن کامل

Differentiation of Adipose-derived Stem Cells into Schwann Cell Phenotype in Comparison with Bone Marrow Stem Cells

Objective(s) Bone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs), but adipose tissue appears to be an alternative and more readily available source. In this study, rat adipose-derived stem cells (ADSCs) were induced to differentiate into Schwann-like cells and compared with rat bone marrow stem cells (BMSCs) for their Schwann-like cells differentiation pote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie

دوره 65 5  شماره 

صفحات  -

تاریخ انتشار 2011